ONE-DIMENSIONAL MODEL OF THE MOTION OF A CONCENTRATED DISPERSE MIXTURE
IN AN ANNULAR DUCT
D. V. Bakonin, V. A. Drach, and E. M. Dyn'kin

The one-dimensional motion of a concentrated disperse mixture consisting of large granules of polyethylene (the disperse phase) and water (the carrier phase, i.e., the dispersion medium in an annular duct is investigated. The duct is bounded on the outside by the impermeable wall of a cylinder of radius R_{2}, and on the inside by a cylindrical grid of radius R_{1}; both boundaries are vertically oriented. A mixer is placed inside the cylindrical grid, its axis aligned with the axis of the cylinders. This type of problem of the motion of a mixture arises in the investigation of the polymerization initiation process in the production of synthetic rubbers. In this process, active polymerization centers are formed in the mixing of monomers, a solvent, and coarse granules of an alkali metal [1]. The specific features of the real mixture are investigated in the model medium of water containing polyethylene granules.

Experimental

The experimental apparatus consisted of three identical sections (Fig, 1). The cylindrical casing 1 was made of clear plastic. The apparatus was sectioned by means of the separator disks 2, in which the windows 3 were made. The cylindrical metal grids 4 were installed coaxially in each section. The mixer 5 had a trapezoidal four-paddle configuration with projecting flanges along the edges. The reflecting disks 6 were mounted on the grid at the level of the flanges.

Experiments to measure the circumferential velocity v_{1} of the carrier phase were performed on an apparatus with $R_{2}=0.125 \mathrm{~m}$. The height of each section was 0.265 m . The grid radius R_{1} was varied from 0.06 to 0.089 m , and the mixer radius from 0.049 to 0.073 m , respectively. Square-mesh grids with mesh areas of 0.025 , 1 , and $4 \mathrm{~mm}^{2}$ were used in the experiment. The angular velocity ω of the mixer was varied from 30 to $145 \mathrm{sec}^{-1}$, and the relative volume content α_{2} of the granules from 0.05 to 0.22 . The cylindrical polyethylene granules (density $950 \mathrm{~kg} / \mathrm{m}^{3}$) had a diameter of 5 mm and a length of 6 mm .

The experiments showed that the motion of the mixture takes place mainly along arcs of a circle. The measurements of v_{1} were carried out with a Pitot tube in the middle cross section. The tube had two channels of diameter 1 mm , which were mutually oriented at 90° and were designed to measure the static and dynamic pressure of the flow. The tube was set up in a horizontal plane. Figure 2 shows the measured values of v_{1} for $R_{1}=0.06 \mathrm{~m}$, a 1×1 mm grid mesh, $\alpha_{2}=0.125$, and $\omega=40,64,93,115$, and $145 \mathrm{sec}^{-1}$ (open circles $1-5$, respectively). Also shown are the values of v_{1} in the absence of the granules ($\alpha_{2}=0$) for $\omega=$ $40,64,93,115$, and $145 \mathrm{sec}^{-1}$ (dark circles 1-5).

Figure 3 shows the measured values of v_{1} for $R_{1}=0.075 \mathrm{~m}$, a $1 \times 1 \mathrm{~mm}$ grid mesh, $\omega=$ $93 \mathrm{sec}^{-1}$ and $\alpha_{2}=0,0.045,0.125,0.16$, and 0.22 (points $1-5$).

The following characteristic features are discerned in the flow of a mixture with a sufficiently high content of granules: 1) The carrier phase is abruptly retarded at the grid, its deceleration increasing with the value of $\alpha_{2} ; 2$) for a sufficient distance between the grid and the wall, a pronounced minimum of the v_{1} profile is observed at a distance of the order of three granule diameters from the grid; 3) after the minimum, the v_{1} profile has a maximum, and then the velocity drops slightly or stabilizes. For a small granule content ($\alpha_{2} \leqslant 0.05$) the v_{1} profile is similar to the profile of Couette flow (between rotating cylinders).

The measurements of v_{1} were carried out until uniform mixing of the granules throughout the volume could no longer be maintained. At $\alpha_{2}>0.22$ the visible mobility of the granules began to decreases, and clusters of granules with a low mobility relative to one another were

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 77-83, July-August, 1985. Original article submitted May 15, 1984.

formed at isolated locations. These clusters continued to move slowly in a circle at first, but this motion ceased at $\alpha_{2} \sim 0.26$.

The power spent in stirring the mixture was determined by measuring the difference in the power consumed by the electric motor driving the mixer in the filled apparatus and in the no-load regime, i.e., in the absence of the mixture.

We now formulate a one-dimensional model of the steady flow of the mixture on the basis of concepts developed previously [2-4]. This model adequately describes the experimental data and makes it possible to explain the specific features of the flow of the mixture.

One-Dimensional Model of the Motion of the Mixture

We regard the disperse phase as a pseudogas of granules (spheres of radius a) [2, 3]. The pseudogas creates a mean pressure p_{2} and has a mean effective pseudoviscosity μ_{2}. Each granule participates in the mean motion with a velocity v_{2} and in the random (fluctuation) motion with a velocity $w_{2}(v)$, where v indexes the granules. The mean values of the random velocities are assumed to be equal to zero. In the ensuing discussion we use the mean-square velocity $w_{2^{*}}^{2}=\frac{1}{N} \sum_{v=1}^{N}\left|w_{2}\right|^{2}(v)$, where N is the number of granules. The materials of the phase have nearly equal densities.

A granule is acted upon by the mean forces of viscous friction f_{μ} and of the additional masses fM_{M}, the Magnus force f_{m}, and the buoyancy (Archimdes force) f_{A}.

Velocities of the Phases. Let vir, vi日, viz denote the components of the vectors vi ($i=$ 1,2) along the axes of a cylindrical coordinate system r, θ, z. We assume that the motion of the mixture takes place along circles with centers on the z axis, so that

$$
v_{i r}=v_{i z}=0, v_{i \theta}=v_{i \theta}(r)=v_{i}, \quad v_{1}>v_{2}
$$

Then the mean force $f \mu$ has a nonzero projection only on the θ axis (f_{μ}), f_{m} and f_{M} only on the r axis $\left(f_{m}\right)$, and f_{A} only on the $r\left(f_{A}\right)$ and z axes.

We first consider the model of the initial approximation. We assume that the mean viscous friction force $f^{12} \mu$ in interaction of the phases is determined mainly by the effective viscos-
ity μ_{1} of the carrier phase and the relative slip velocity $v_{12}=v^{0}{ }_{1}-v^{0}{ }_{2}$, where v_{1}^{0} and $v^{0}{ }_{2}$ are the velocities of the initial approximation. Then in the initial approximation

$$
\begin{equation*}
f_{\mu}^{12}=-f_{\mu}^{21}=K \mu_{1} v_{12} \tag{1}
\end{equation*}
$$

where K is a parameter depending on a, w_{2}, and $\rho_{1}^{0}\left(\rho_{1}{ }_{1}\right.$ is the density of the material of the carrier phase).

The equations of motion of the disperse mixture have the form

$$
\begin{align*}
& L v_{1}^{0} \equiv \frac{d^{2} v_{1}^{n}}{d r^{2}}+\frac{1}{r} \frac{d v_{1}^{0}}{d r}-\frac{v_{1}^{0}}{r^{2}}=k_{1}\left(v_{1}^{0}-v_{2}^{0}\right) \tag{2}\\
& L v_{2}^{0} \equiv \frac{d^{2} v_{2}^{0}}{d r^{2}}+\frac{1}{r} \frac{d v_{2}^{0}}{d r}-\frac{v_{2}^{0}}{r^{2}}=k_{2}\left(v_{2}^{0}-v_{1}^{0}\right) \tag{3}
\end{align*}
$$

where $k_{1}=n K ; k_{2}=\left(\mu_{1} / \mu_{2}\right) k_{1} ; n=3 \alpha_{2} / 4 \pi a^{3}$ is the granule concentration.
For the new variables $f_{1}\left(r \sqrt{k_{1}+k_{2}}\right)=v_{1}^{0}-v_{2}^{0}, f_{2}(r)=v_{1}^{0}+\left(k_{i} / k_{2}\right) v_{2}^{0}$, EqS. (2) and (3)
are reduced to modified Bessel equations:

$$
\begin{align*}
L f_{1} & =f_{1} \tag{4}\\
L f_{2} & =0 \tag{5}
\end{align*}
$$

In accordance with the experimental data, we use the decreasing solutions of (4), (5), which are modified Bessel functions $K_{1}(r)$. Setting $r \sqrt{k_{1}+k_{2}} \geqq 2$ and restricting the asymptotic expansion of $K_{1}(r)$ the first term, we obtain

$$
\begin{align*}
& v_{1}^{0}=A r+B r^{-1}+r^{-\frac{1}{2}} C_{1} \exp \left(-r \sqrt{k_{1}+k_{2}}\right) \tag{6}\\
& v_{2}^{0}=A r+B r^{-1}-\frac{\mu_{1}}{\mu_{2}} C_{1} r^{-\frac{1}{2}} \exp \left(-r \sqrt{k_{1}+k_{2}}\right) \tag{7}
\end{align*}
$$

where A, B, and C_{1} are constants.
The velocity $v^{0}{ }_{1}$ is the sum of two functions: a) a function analogous to the Couette velocity profile $\left(\mathrm{Ar}+\mathrm{Br}^{-1}\right)$, which establishes the general velocity level; b) an exponential function that decreases rapidly near the grid: $C_{1} r^{-1 / 2} \exp \left(-r \sqrt{k_{1}+k_{2}}\right)$.

The velocity $\mathrm{v}_{1}{ }_{1}$ decreases, and $\mathrm{v}_{2}{ }_{2}$ increases in the direction toward the wall. This model describes the abrupt slowing of v_{1} at the grid, which was observed experimentally. The effect is attributed to a certain increase in the granule concentration at the grid and a change in the flow conditions around them in comparison with the main volume. The function b) only slightly affects the nature of the $v^{0}{ }_{1}$ profile at the wall, where the latter is determined mainly by the function a), which decreases monotonically from the grid to the wall. The constants A, B, and C_{1} are evaluated according to the experimental data. Then the velocity v_{2} is completely determined by the specification of the ratio $k_{2} / k_{1}=\mu_{1} / \mu_{2}$, where $\mathrm{v}_{2}{ }_{2}<\mathrm{v}^{\mathrm{O}} \mathrm{I}$.

The model (6), (7) describes only monotonic variations of the velocities v_{1} and v_{2}. Such profiles of v_{1} are typical of not too concentrated mixtures $\left(\alpha_{2}<0.1\right)$ or when the ratio of the channel width to the granule diameter $\left(R_{2}-R_{1}\right) / 2 a<6$. However, the proposed mechanism does not account for the observed acceleration of the carrier phase after the abrupt deceleration zone. To describe this effect we introduce additional assumptions.

The model (6), (7) incorporates a linear dependence of the friction force f on the velocities v_{1} and v_{2}. The true expression for f_{1}, of course, is nonlinear, and so the true profiles of the velocities v_{1} and v_{2} differ from the velocities $v^{0}{ }_{1}$ and $v^{0}{ }_{2}$ given by the model (6), (7), A comparison of the calculated and experimental values of v_{1} shows, however, that these deviations are not too great. We can therefore assume that $v_{1}=v_{1}^{0}+\Delta v_{1}, v_{2}=v_{2}^{0}+$ Δv_{2}, where Δv_{1} and Δv_{2} are small corrections. On the other hand, the relative variations of the experimental values of v_{1} along the radius is also small, and it is a reasonable assumption to "freeze" the coefficients in the linear terms of the expansion in powers of Δv_{i} and Δv_{2}.

The resulting first-approximation system has the form

$$
\begin{align*}
& L \Delta v_{1}=k_{3} \Delta v_{1}-k_{4} \Delta v_{2} \tag{8}\\
& L \Delta v_{2}=-k_{5} \Delta v_{1}+k_{6} \Delta v_{2} \tag{9}
\end{align*}
$$

It is natural to assume that the difference between Eqs. (8) and (9) in this approximation is elicited, as in the case of (6) and (7), only by the difference in the effective viscosities μ_{1} and μ_{2}, i.e.,

$$
\begin{equation*}
k_{3} / k_{6}=k_{4} / k_{5}=k_{1} / k_{2}=\mu_{2} / \mu_{1}>1 . \tag{10}
\end{equation*}
$$

For any values of the coefficients k_{3}, k_{4}, k_{5}, and k_{6} the solutions of the system (8), (9) are represented by linear combinations of first-order modified Bessel functions of the form $F(r \sqrt{\lambda})$, where λ is one of the two eigenvalues of the matrix of coefficients. For $\lambda<0$ such a function oscillates, in contradiction with the experimental, and such solutions must be rejected. Solutions that grow in the radial direction (functions of the second kind) must be similarly rejected on the basis of physical considerations.

For small values of λ the corresponding components of the solution differ very little from the component of the Couette profile B / r and cannot be distinguished from the initial approximation $\mathrm{v}^{0}{ }_{1}, \mathrm{v}_{2}$. Finally, inasmuch as v^{O}, and $\mathrm{v}_{2}{ }_{2}$ practically coincide at a certain distance from the grid, in which case it is logical to expect the velocity v_{2} of the granules not to exceed the velocity v_{1}, we obtain the necessary condition $\Delta \mathrm{v}_{2}<\Delta \mathrm{v}_{1}$.

An analysis of the resulting constraints on the coefficients k_{3} and k_{4} leads to the conclusion that the system (8), (9) in the first approximation has the form

$$
\begin{gather*}
L \Delta v_{1}=k_{3} \Delta v_{1} ; \tag{11}\\
L \Delta v_{2}=\frac{\mu_{1}}{\mu_{2}} k_{3} \Delta v_{2} . \tag{12}
\end{gather*}
$$

As before, we take the functions $K_{1}(r)$ as the solutions of Eqs. (11) and (12). Assuming that $r \sqrt{\frac{\mu_{1}}{\mu_{2}} k_{3}} \geqslant 2$ and restricting the asymptotic expansion of $K_{1}(r)$ to the first term, we obtain

$$
\begin{gather*}
v_{1}=A r+B r^{-1}+r^{-1 / 2}\left(C_{1} \exp \left(-r \sqrt{k_{1}+k_{2}}\right)+C_{2} \exp \left(-r \sqrt{k_{3}}\right)\right) \tag{13}\\
v_{2}=A r+B r^{-1}+r^{-1 / 2}\left(-\frac{\mu_{1}}{\mu_{2}} C_{1} \exp \left(-r \sqrt{k_{1}+k_{2}}\right)+C_{3} \exp \left(-r \sqrt{\frac{\mu_{1}}{\mu_{2}} k_{3}}\right)\right. \tag{14}
\end{gather*}
$$

where C_{2} and C_{3} are constants, $C_{2}<0$.
In this case the velocity v_{1} is the sum of three functions, two of which are described above, while the third, $\mathrm{C}_{2} \mathrm{r}^{-1 / 2}$ exp $\left(-\mathrm{r} \sqrt{\mathrm{k}_{3}}\right)$, is agrowing exponential function, which provides the pronounced minimum of the v_{1} profile for a sufficient radial width of the duct. The sum of these functions describes the above-indicated features of the v_{1} profile. The constants $A, B, C_{1}, C_{2}, C_{3}, k_{1}+k_{2}$, and k_{3} are evaluated according to the experimental data.

Viscosity of the Carrier Phase and Distribution of Power Consumption in Stirring of the Mixture. To determine μ_{1} we use the experimental data on the determination of the power consumption N_{0} in stirring of the mixture. We assume that this power is spent mainly in the dissipation of energy E_{1} in the carrier phase and E_{2} in the disperse phase, and also in overcoming the resistance of the granules in the flow around them (E_{12}), so that

$$
\begin{equation*}
N_{0}=-E_{1}-E_{2}-E_{12} \tag{15}
\end{equation*}
$$

From the general expression for the dissipation of energy in a viscous fluid [5] we obtain (per unit height of the duct)

$$
\begin{equation*}
E_{1}=-\pi \alpha_{1} \mu_{1} \int_{R_{1}}^{R_{2}}\left(\frac{d v_{1}}{d r}-\frac{v_{1}}{r}\right)^{2} r d r \tag{16}
\end{equation*}
$$

$$
\begin{align*}
E_{2} & =-\pi \alpha_{2} \mu_{1} \frac{k_{1}}{k_{2}} \int_{R_{1}}^{R_{2}}\left(\frac{d v_{2}}{d r}-\frac{v_{2}}{r}\right)^{2} r d r \tag{17}\\
E_{12} & =-2 \pi k_{1} \mu_{1} \int_{R_{1}}^{R_{2}}\left(v_{1}-v_{2}\right)^{2} r d r \tag{18}
\end{align*}
$$

Then the value of μ_{1} is uniquely determined from (15). The distribution of the power consumption is given by Eqs. (16)-(18).

Distribution of the Disperse Phase. It was assumed above that $\alpha_{2}=$ const. To determine the distribution of the disperse phase along the duct (second approximation) we write $\alpha_{2}=\alpha_{2}(r)$. We fix the profiles of the velocities v_{i} and v_{2} in this case.

The general equation of motion of the disperse phase in projection onto the r axis has the form

$$
\begin{equation*}
d p_{2} / d r=n\left(f_{M}+f_{m}+f_{\mathrm{A}}\right) \tag{19}
\end{equation*}
$$

For f_{m} and f_{A} we use the expressions [4]

$$
\begin{gather*}
f_{\mathrm{A}}=\frac{4}{3} \pi a^{3} \rho_{1}^{0}\left(\frac{d_{1} v_{1}}{d t}-g\right) \tag{20}\\
f_{m}=\frac{2}{3} \pi a^{3} \rho_{1}^{0}\left(\frac{d_{1} v_{1}}{d t}-\frac{d_{2} v_{2}}{d t}\right) \tag{21}
\end{gather*}
$$

in which $d_{i} / d t=\partial / \partial t+\mathrm{v}_{\mathrm{i}}\left(\partial / \partial \mathrm{x}_{\mathrm{h}}\right.$.
Next we consider the expression for the Magnus force fM. The cause of rotation of a granule is found mainly in the gradients of the mean velocities of the phases (if fluctuations and collisions of the granules are ignored). By analogy with [4], we set

$$
\begin{equation*}
\mathrm{f}_{\mathrm{M}}=\frac{4}{3} \pi a^{3} \rho_{1}^{0}\left[\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) \times \nabla\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathrm{v}_{2}\right)\right] \tag{22}
\end{equation*}
$$

Using the previously established [2, 3] relation between p_{2} and α_{2}, and taking expressions (20)-(22) into account, we obtain the following from (19):

$$
\begin{equation*}
\frac{d \alpha_{2}}{d r}=\frac{\alpha_{2}\left(1-1,16 \alpha_{2}^{1 / 3}\right)^{2}}{w_{2 *}\left(1-0,773 \alpha_{2}^{1 / 3}\right)}\left[-\left(v_{1}-v_{2}\right) \frac{d}{d r}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)-\frac{3}{2} \frac{v_{1}^{2}-v_{2}^{2}}{r}\right] \tag{23}
\end{equation*}
$$

We set $W_{2 *}=$ const.
A natural additional condition is given by specifying the mean content of the disperse phase:

$$
\begin{equation*}
\left\langle\alpha_{2}\right\rangle=\frac{\int_{R_{1}}^{R_{2}} r \alpha_{2}(r) d r}{\int_{R_{1}}^{R_{2}} r d r} \tag{24}
\end{equation*}
$$

Discussion of Results

It has been assumed in the calculations that the granules are spheres of diameter $2 a$ with the same volume as the cylindrical granules used in the experiment.

Figure 2 shows the calculated values of v_{1} (solid curves) and v_{2} (dashed curves) for $\alpha_{2}=0.125$ and $\omega=40,64,93,115$, and $145 \mathrm{sec}^{-1}$ (curves $I-V$, respectively). Figure 3 shows the same quantities as in Fig. 2 for $\omega=93 \mathrm{sec}^{-1}$ and $\alpha_{2}=0.22,0.16,0.125$, and 0.045 (curves I-IV).

The experimental data were used to evaluate the constants in Eqs. (13) and (14). It was assumed that the v_{I} profile at the wall is determined mainly by the constants A and B.

TABLE 1

No.	$\omega, \sec ^{-1}$		$N_{0}, \mathrm{~W}$	$\frac{E_{1}}{N_{0}} \cdot 100 \%$	$\frac{E_{2}}{N_{0}} \cdot 100 \%$	$\frac{E_{12}}{N_{0}} \cdot 100 \%$
1	30	0,25	6	32,8	0,8	66,4
2	40	0,45	15	33,0	0,7	66,3
3	64	0,94	58	33,4	0,6	66,0
4	93	1,27	137	33,6	0,6	65,8
5	115	1,76	265	33,6	0,7	65,7
6	145	2,45	544	33,7	0,7	65,6
7	159	3,53	909	33,5	0,7	65,8

TABLE 2

No.	α_{2}	$\mu_{1}, \mathrm{~N}_{\mathbf{g}} \mathrm{sec} /$ m^{2}	$\mathrm{~N}_{0}, \mathrm{~W}$	$\frac{E_{1}}{N_{0}} \cdot 100 \%$	$\frac{E_{2}}{N_{0}} \cdot 100 \%$	$\frac{E_{12}}{N_{0}} \cdot 100 \%$
1	0,045	4,25	280	48,6	0,3	51,1
$\mathbf{2}$	0,062	4,11	280	47,8	0,5	51,7
3	0,087	3,87	274	45,8	1,1	53,1
4	0,125	3,71	272	42,4	1,9	55,7
5	0,16	3,63	269	39,1	1,8	59,1
6	0,22	3,42	253	33,4	0,3	66,3

The dependence of these constants on ω was assumed to be linear, and their dependence on α_{2} was assumed to be quadratic. Then the function $\psi(r)=\sqrt{r}\left(v_{I}-A r-B r^{-1}\right)$ was plotted and exhibited abrupt variations at the grid. These results were used to find the constants C_{1} and C_{2}, and it was assumed that they depend linearly on ω. The values of the constants $k_{1}+k_{2}$ and k_{3} were fixed for each ratio R_{1} / R_{2} in the calculations. The tests with $\omega=40$, $115 \mathrm{sec}^{-1}$ were used to determine the indicated constants in Fig. 2, and the tests with $\alpha_{2}=$ $0.045,0.22$ were used for Fig. 3. For the evaluation of the constant C_{3} we assumed that the velocities v_{1} and v_{2} are equal at the wall (see Fig. 3) or at the minimum point (see Fig. 2).

The nature of the flow of the carrier phase is adequately described by the sum of the three functions indicated above. The calculated values of v_{1} are finite at the grid. With an increase in $\omega\left(\alpha_{2}=\right.$ const; see Fig. 2) the values of v_{1} increase, but the nature of the v_{1} profile is preserved. For each value of ω the velocity v_{1} is a maximum at the grid, and then the v_{l} profile acquires a pronounced minimum, after which v_{1} varies only slightly.

With an increase in the granule content ($\omega=$ const; see Fig. 3) a significant deformation of the v_{1} profile is observed. For $\alpha_{2} \leqslant 0.045$ the granule content has scarcely any influence on v_{1}. With an increase in α_{2} an ever-increasing retardation of the carrier phase is observed at the grid.

Table 1 gives the values of $\mu_{1}, N_{0}, E_{1} / N_{0}, E_{2} / N_{0}$, and E_{12} / N_{0} for various values of ($1 \times 1 \mathrm{~mm}$ grid mesh, $R_{1}=0.06 \mathrm{~m}, \alpha_{2}=0.125$). With an increase in the rpm of the mixer the values of μ_{1} increase. A decrease in the radial dimensions of the channel causes μ_{1} to increase (e.g., in the case $R_{1}=0.089 \mathrm{~m}$ we have $\mu_{1}=30 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}^{2}$ at $\omega=25 \mathrm{sec}^{-1}$ and $\mu_{1}=175$ $\mathrm{N} \cdot \mathrm{sec} / \mathrm{m}^{2}$ at $\omega=145 \mathrm{sec}^{-1}$). All of this is consistent with the known estimate for the turbulent viscosity [5].

The main power consumption (see Table 1) is spent in the fraction E_{12}. The least energy dissipation is in the disperse phase. With a decrease in the radial dimension of the channel, the power consumption increases and is redistributed, viz., the energy dissipation increases in the carrier and disperse phases, and the fraction E_{12} decreases. This is evidently related to enhancement of the influence of turbulent fluctuations, which results in an increase of $\mathrm{w}_{2 *}$ and, as a consequence, smoothing of the v_{1} profile.

Table 2 shows the same quantities as in Table 1 for various values of α_{2} ($1 \times 1 \mathrm{~mm}$ grid mesh, $R_{1}=0.075 \mathrm{~m}, \omega=93 \mathrm{sec}^{-1}$). The decrease in the power consumption with increasing α_{2} is associated with the decrease in the fraction E_{1} and the increase in the fraction $E_{i 2}$. The first is caused by a decrease in the turbulence scale owing to a reduction in the mean free path of the granules, and also by the suppression of small-scale fluctuations as the granule concentration is increased. The increase in E_{12} is associated with the increase in α_{2}.

We now consider the distribution of the disperse phase in the channel. The solution of Eqs. (23) and (24) for various values of $\left\langle\alpha_{2}\right\rangle$ shows that α_{2} remains practically constant at distances from the grid greater than two or three granule diameters. At smaller distances from the grid for a channel of sufficient radius $\left[\left(R_{2}-R_{1}\right) / 2 a>6\right]$ the solution predicts a decrease in α_{2}. However, the investigated model does not allow for processes near the grid, viz., the variation of the fluctuation velocities, inflow, and repulsion of the granules, etc. Consequently, the problem of the behavior of the granules near the grid requires additional investigation.

LITERATURE CITED

1. V. A. Drach, S. M. Krasil'nikov, G. M. Tolstopyatov, and M. L. Gol'din, "Mathematical description of the process of synthesis of general-purpose rubber," in: Abstracts of the Sixth All-Union Conference "Khimreaktor-6" [in Russian], Vol. 1, Dzerzhinsk (1977).
2. M. A. Gol'dshtik, "Theory of concentrated disperse systems," in: Proceedings of the International School on Transfer Processes in Fixed-Bed and Fluid-Bed Granular Materials [in Russian], Minsk (1977).
3. M. A. Gol'dshtik and B. N. Kozlov, "Elementary theory of concentrated systems," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1973).
4. R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Mixtures [in Russian], Nauka, Moscow (1978).
5. L. D. Landau and E. M. Lifshits, Continuum Mechanics [in Russian], GITTL, Moscow (1953); Fluid Mechanics, Pergamon, Oxford-New York (1959).

FORMATION OF FLOW IN A GASDYNAMIC MOLECULAR SOURCE

AT LOW REYNOLDS NUMBERS

V. N. Gusev and A. I. Omelik

UDC 533.6.011.532.522.2

1. The usual means of creating a molecular beam in a gasdynamic source [1] is shown in Fig. 1. From the forechamber 1 the gas, with a pressure p_{0} and a temperature T_{0}, expands through the nozzle 2 to a certain supersonic Mach number in the preskimer chamber 3 ($0 \leqq x \leqq$ x_{S}). In the process, a considerable part of the chaotic thermal motion of the molecules is converted into ordered mass motion. In the high-vacum chamber $4\left(x>x_{s}\right)$ a small part of s this stream is subsequently formed into a molecular beam with the help of a conical intake the skimmer 5; 6 is the boundary of the undisturbed region of the jet, 7 is a suspended shock, and 8 is the boundary of the jet.

For a Maxwell velocity distribution of the molecules with a superposed mass velocity v_{m} the intensity of such a source at the detection point $x d$ is [2]

$$
\begin{aligned}
& I\left(x_{d}\right)=\rho\left(x_{d}\right) v_{m} x_{d}^{2}=I\left(x_{s}\right)\left\{1-\cos ^{2} \psi \mathrm{e}^{\left.-s_{s}^{2} \sin ^{2} \varphi \frac{I_{1}\left(S_{s} \cos \psi\right)}{I_{1}\left(S_{s}\right)}\right\},}\right. \\
& I_{1}(x)=\frac{1}{2} \mathrm{e}^{-x^{2}}+\frac{x \sqrt{\pi}}{2}(1+\operatorname{erf} x),
\end{aligned}
$$

where ρ is the density; $S=(\sqrt{K} / 2) M=V_{m}(2 R T)^{-1 / 2}$ is the velocity ratio; k is the ratio of specific heats; $\psi=\varphi+\gamma$. For small angles ψ, as is usually the case in such installations, the latter expression is simplified,

$$
\begin{equation*}
I\left(x_{d}\right)=I\left(x_{s}\right)\left[1-e^{-\psi^{2} S_{s}^{2}}\right] \tag{1.1}
\end{equation*}
$$

Zhukovskii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 83-91, July-August, 1985. Original article submitted April 161984.

