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The one-dimensional motion of a concentrated disperse mixture consisting of large gran- 
ules of polyethylene (the disperse phase) and water (the carrier phase, i.e., the dispersion 
medium) in an annular duct is investigated. The duct is bounded on the outside by the im- 
permeable wall of a cylinder of radius R2, and on the inside by a cylindrical grid of radius 
RI; both boundaries are vertically oriented. A mixer is placed inside the cylindrical grid, 
its axis aligned with the axis of the cylinders. This type of problem of the motion of a 
mixture arises in the investigation of the polymerization initiation process in the produc- 
tion of synthetic rubbers. In this process, active polymerization centers are formed in the 
mixing of monomers, a solvent, and coarse granules of an alkali metal [i]. The specific 
features of the real mixture are investigated in the model medium of water containing poly- 
ethylene granules. 

Experimental 

The experimental apparatus consisted of three identical sections (Fig~ i). The cylin- 
drical casing I was made of clear plastic. The apparatus was sectioned by means of the sepa- 
rator disks 2, in which the windows 3 were made. The cylindrical metal grids 4 were installed 
coaxially in each section. The mixer 5 had a trapezoidal four-paddle configuration with pro- 
jecting flanges along the edges. The reflecting disks 6 were mounted on the grid at the level 
of the flanges. 

Experiments to measure the circumferential velocity v I of the carrier phase were per- 
formed on an apparatus with R 2 = 0.125 m. The height of each section was 0.265 m. The grid 
radius R l was varied from 0.06 to 0.089 m, and the mixer radius from 0.049 to 0.073 m, re- 
spectively. Square-mesh grids with mesh areas of 0.025, i, and 4mm 2 were used in the experi- 
ment. The angular velocity m of the mixer was varied from 30 to 145 sec -I, and the relative 
volume content ~2 of the granules from 0.05 to 0.22. The cylindrical polyethylene granules 
(density 950 kg/m 3) had a diameter of 5 mm and a length of 6 mm. 

The experiments showed that the motion of the mixture takes place mainly along arcs of 
a circle. The measurements of v I were carried out with a Pitot tube in the middle cross sec- 
tion. The tube had two channels of diameter 1 mm, which were mutually oriented at 90 ~ and 
were designed to measure the static and dynamic pressure of the flow. The tube was set up 
in a horizontal plane. Figure 2 shows the measured values of v I for R l = 0.06 m, a 1 • 1 
mm grid mesh, ~2 = 0.125, and ~ = 40, 64, 93, 115, and 145 sec -l (open circles 1-5, respec- 
tively). Also shown are the values of v I in the absence of the granules (~2 = 0) for ~ = 
40, 64, 93, 115, and 145 sec -l (dark circles 1-5). 

Figure 3 shows the measured values of v I for R I = 0.075 m, a 1 • 1 mm grid mesh, ~ = 
93 sec -l and ~2 = 0, 0.045, 0.125, 0.16, and 0.22 (points 1-5). 

The following characteristic features are discerned in the flow of a mixture with a suf- 
ficiently high content of granules: i) The carrier phase is abruptly retarded at the grid, 
its deceleration increasing with the value of ~2; 2) for a sufficient distance between the grid 
and the wall, a pronounced minimum of the v I profile is observed at a distance of the order 
of three granule diameters from the grid; 3) after the minimum, the v I profile has a maximum, 
and then the velocity drops slightly or stabilizes. For a small granule content (~2 ~ 0.05) 
the v I profile is similar to the profile of Couette flow (between rotating cylinders). 

The measurements of v I were carried out until uniform mixing of the granules throughout 
the volume could no longer be maintained. At ~2 > 0.22 the visible mobility of the granules be- 
gan to decreases, and clusters of granules with a low mobility relative to one another were 
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formed at isolated locations. These clusters continued to move slowly in a circle at first, 
but this motion ceased at ~2 ~ 0.26. 

The power spent in stirring the mixture was determined by measuring the difference in 
the power consumed by the electric motor driving the mixer in the filled apparatus and in 
the no-load regime, i.e., in the absence of the mixture. 

We now formulate a one-dimensional model of the steady flow of the mixture on the basis 
of concepts developed previously [2-4]. This model adequately describes the experimental 
data and makes it possible to explain the specific features of the flow of the mixture. 

0ne-Dimensional Model of the Motion of the Mixture 

We regard the disperse phase as a pseudogas of granules (spheres of radius a) [2, 3]. 
The pseudogas creates a mean pressure P2 and has a mean effective pseudoviscosity P2- Each 
granule participates in the mean motion with a velocity v 2 and in the random (fluctuation) 
motion with a velocity w2(v), where v indexes the granules. The mean values of the random 
velocities are assumed to be equal to zero. In the ensuing discussion we use the mean-square 

N 

velocity w2.2 = ~Elw212(v),__ where N is the number of granules. The materials of the phase 

have nearly equal densities. 

A granule is acted upon by the mean forces of viscous friction f~ and of the additional 
masses fM, the Magnus force fm, and the buoyancy (Archimdes force) fA. 

Velocities of the Phases. Let Vir, viS, viz denote the components of the vectors vi (i = 
i, 2) along the axes of a cylindrical coordinate system r, 0, z. We assume that the motion 
of the mixture takes place along circles with centers on the z axis, so that 

v i , =  vi~=O~ r io=rio(r )  = v i ,  v l > v 2 .  

Then the mean force f~ has a nonzero projection only on the 0 axis (f~), fm and fM only 
on the r axis (fm), and fA only on the r(fA) and z axes. 

We first consider the model of the initial approximation. We assume that the mean viscous 
friction force f12 in interaction of the phases is determined mainly by the effective viscos- 
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= v ~ -- v ~ where v ~ and v ~ ity ~i of the carrier phase and the relative slip velocity v12 l 2, l 2 
are the velocities of the initial approximation. Then in the initial approximation 

/y = = ( i ) 

where K is a parameter depending on a, w2,, and pai (O~ is the density of the material of the 
carrier phase). 

The equations of motion of the disperse mixture have the form 

o 
L v  o d%~ t d :  1 vl k,(v~-- v~); 

dr ---Yz -}- r dr r 2 

:oo 4 
Lv~ ::- - -  + 2 = -- 

dr 2 r dr r 

2) 

3) 

where k• = nK; k 2 = (~i/g2)kl; n = 3a2/4~a a is the granule concentration~ 

For the new variables fl(r/kl + kS) = v~ v~ f2(r) = v~ + (kl/k2)v~ Eqs. (2) and 
(3) are reduced to modified Bessel equations: 

LIt =/i; 4) 

Lh = 0. (5) 

In accordance with the experimental data, we use the decreasing solutions of (4), (5), 
which are modified Bessel functions Kl(r)o Setting r/k l + k2 ~ 2 and restricting the asymp- 
totic expansion of K1(r) the first term, we obtain 

i 

v~ = A r  + B r  - 1  + r - ~ C 1  exp(-- r t / k ~ - ~ ) ;  (6) 

1 

~ = A r  + B r  -1  - -  ~1 Clr-~exp ( _  r ] / ~ ) ,  (7) 
~2 

where A, B, and C1 are cons tants .  

The velocity v~ i is the stun of two functions: a) a function analogous to the Couette 
velocity profile (Ar + Br-1), which establishes the general velocity level; b) an exponen- 
tial function that decreases rapidly near the grid: C1r-i/=exp (-rk~l + k2). 

The velocity v ~ decreases and v ~ increases in the direction toward the wall. This 1 , 2 

model describes the abrupt slowing of v I at the grid, which was observed experimentally. The 
effect is attributed to a certain increase in the granule concentration at the grid and a 
change in the flow conditions around them in comparison with the main volume. The function 
b) only slightly affects the nature of the v~ i profile at the wall, where the latter is de- 
termined mainly by the function a), which decreases monotonically from the grid to the wall. 
The constants A, B, and C I are evaluated according to the experimental data. Then the veloc- 
ity v~ is completely determined by the specification of the ratio k2/k I = ~!/~2, where 
V02 < V01 . 

The model (6), (7) describes only monotonic variations of the velocities v I and v 2 . Such 
profiles of v I are typical of not too concentrated mixtures (~2 < 0.i) or when the ratio of 
the channel width to the granule diameter (R 2 - R1)/2a < 6. However, the proposed mechanism 
does not account for the observed acceleration of the carrier phase after the abrupt decel- 
eration zone. To describe this effect we introduce additional assumptions. 

The model (6),(7) incorporates a linear dependence of the friction force f on the vel- 
ocities v I and v 2. The true expression for f , of course, is nonlinear, and so~the true pro- 
files of the velocities v I and v 2 differ fromUthe velocities v~ i and v ~ given by the model 
(6), (7). A comparison of the calculated and experimental values of v~ shows, however, that 

V ~ + AV 1 V 2 = V 0 + these deviations are not too great. We can therefore assume that v~ = ~ , 2 
AV2, where Av I and Av2 are small corrections. On the other hand, the relative variations 
of the experimental values of v I along the radius is also small, and it is a reasonable as- 
sumption to "freeze" the coefficients in the linear terms of the expansion in powers of Av i 
and Av 2 . 

The resulting first-approximation system has the form 

521 



LAy i ~ k.~A~h --  k4Avf; (8 )  

Lhr2 = --kah~'i @" kGAv2" (9)  

I t  i s  n a t u r a l  t o  assume t h a t  t h e  d i f f e r e n c e  be tween  Eqs.  (8 )  and (9)  in  t h i s  app rox ima-  
t i o n  is elicited, as in the case of (6) and (7), only by the difference in the effective vis- 
cosities ~i and ~2, i.e., 

k~ik6 = ka!k~ ~ kl!k2 = ~ L l p i >  l- (10)  

For  any v a h e s  o f  t h e  c o e f f i c i e n t s  k3,  k4,  k s ,  and ks t h e  s o h t i o n s  o f  t h e  sy s t em ( 8 ) ,  
(9 )  a r e  r e p r e s e n t e d  by l i n e a r  c o m b i n a t i o n s  o f  f i r s t - o r d e r  m o d i f i e d  B e s s e l  f u n c t i o n s  o f  t h e  
form F(r/~--),  where  h i s  one o f  t h e  two e i g e n v a l u e s  o f  t h e  m a t r i x  o f  c o e f f i c i e n t s .  For  ~ < 0 
such  a f u n c t i o n  o s c i l l a t e s ,  in  c o n t r a d i c t i o n  w i t h  t h e  e x p e r i m e n t a l ,  and such  s o l u t i o n s  must  
be r e j e c t e d .  S o l u t i o n s  t h a t  grow in  t h e  r a d i a l  d i r e c t i o n  ( f u n c t i o n s  o f  t h e  second  k i n d )  must  
be s i m i l a r l y  r e j e c t e d  on t h e  b a s i s  o f  p h y s i c a l  c o n s i d e r a t i o n s .  

For  s m a l l  v a l u e s  o f  ~ t h e  c o r r e s p o n d i n g  components  o f  t h e  s o l u t i o n  d i f f e r  v e r y  l i t t l e  
f rom t h e  component  o f  t h e  C o u e t t e  p r o f i l e  B / r  and c a n n o t  be d i s t i n g u i s h e d  f rom t h e  i n i t i a l  
a p p r o x i m a t i o n  v ~  v~  F i n a l l y ,  inasmuch as  v ~  and v~ p r a c t i c a l l y  c o i n c i d e  a t  a c e r t a i n  
d i s t a n c e  f rom t h e  g r i d ,  in  which  c a s e  i t  i s  l o g i c a l  t o  e x p e c t  t h e  v e l o c i t y  v2 o f  t h e  g r a n -  
u l e s  n o t  t o  e x c e e d  t h e  v e l o c i t y  v l ,  we o b t a i n  t h e  n e c e s s a r y  c o n d i t i o n  Av2 < 5 v i .  

An a n a l y s i s  o f  t h e  r e s u l t i n g  c o n s t r a i n t s  on t h e  c o e f f i c i e n t s  k s and k4 l e a d s  t o  t h e  con-  
c l u s i o n  t h a t  t h e  s y s t e m  ( 8 ) ,  (9 )  in  t h e  f i r s t  a p p r o x i m a t i o n  has  t h e  form 

LAv~ = kahv~; 

LAy2 = ~ kzhv 2. 

As before, we take the functions Ki(r) as the solutions of Eqs. 

ing that r l / / / ~ k ~ 2  

we obtain 

(ii) 

(12)  

(11)  and ( 1 2 ) .  Assum- 

and r e s t r i c t i n g  t h e  a s y m p t o t i c  e x p a n s i o n  o f  K l ( r )  t o  t h e  f i r s t  t e rm ,  

vi---- A r  JF B r - ~  - r-llf(C1 exp ( - - r V k  i ~- kf) 2F C 2 exp ( - - r V ~ ) ) ;  (13)  

( "1 V ~ )  + C3exp k3 v ~ = A r  + Br - l  + r -1/2 - - ~ C l e x p ( - - r  - - r  (14)  

where C 2 and C 3 are constants, C2 < 0. 

In this case the velocity vl is the sum of three functions, two of which are described 
above, while the third, Cfr -172 exp (-r~), is agrowing exponential function, which pro- 
vides the pronounced minimum of the v I profile for a sufficient radial width of the duct. 
The sum of these functions describes the above-indicated features of the v I profile. The 
constants A, B, CI, C 2, C3, kl + kf, and k 3 are evaluated according to the experimental data. 

Viscosity of the Carrier Phase and Distribution of Power Consumption in Stirring of the 
Mixture. To determine ~i we use the experimental data on the determination of the power 
consumption No in stirring of the mixture. We assume that this power is spent mainly in the 
dissipation of energy E I in the carrier phase and E 2 in the disperse phase, and also in over- 
coming the resistance of the granules in the flow around them (Elf), so that 

N o = - - E 1 - - E ~ - - E 1 2 .  (15)  

From t h e  g e n e r a l  e x p r e s s i o n  f o r  t h e  d i s s i p a t i o n  o f  e n e r g y  in  a v i s c o u s  f l u i d  [5] we o b t a i n  
( p e r  u n i t  h e i g h t  o f  t h e  d u c t )  

R2 

( d v l - - ~ ) f r d r ;  (16)  Ei  = - - ~ a l P l ~  \dr 
B 1 
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i2 2 
k, 

" 1t I 

El2 = • 2akl,Lt' 1 (vi - -  v2) ~ rdr. 
P'I 

(17)  

(:8) 

Then the value of ~i is uniquely determined from (15). The distribution of the power 
consumption is given by Eqs. (16)-(18). 

Distribution of the Disperse Phase. It was assumed above that ~z = const. To deter- 
mine the distribution of the disperse phase along the duct (second approximation) we write 
a2 = ~2(r) - We fix the profiles of the velocities v i and v 2 in this case. 

The general equation of motion of the disperse phase in projection onto the r axis has 
the form 

dp/dr  = n(/m + / m  + /~). 

For fm and fA we use the expressions [4] 

(19)  

(20) 

2 ~3~0[~1VI  ~2~21 
/m= ~ "'~ V l \ ' " ~  ~ t , ] .  ~ (21) 

i n  w h i c h  d i / d t  ~ 8 / 8 t  + v k i ( 8 / S x h .  

Next we consider the expression for the Magnus force fM. The cause of rotation of a 
granule is found mainly in the gradients of the mean velocities of the phases (if fluctua- 
tions and collisions of the granules are ignored). By analogy with [4], we set 

~M ~~a3p~[(vl--v2) X V(~lv I + ~2v~)]. (22) 

Using the previously established [2, 3] relation between P2 and ~2, and taking expressions 
(20)-(22) into account, we obtain the following from (19): 

: �9 ( 2 3 )  

We set wi, = const. 

A natural additional condition is given by specifying the mean content of the disperse 
phase: 

~2 

s  2 (r) dr 
R 1 

<a~>----- ~ - .  (24) 
rdr 

R1 

Discussion of Results 

It has been assumed in the calculations that the granules are spheres of diameter 2a 
with the same volume as the cylindrical granules used in the experiment. 

Figure 2 shows the calculated values of v I (solid curves) and v 2 (dashed curves) for 
~z = 0.125 and m = 40, 64, 93, 115, and 145 sec -l (curves I-V, respectively). Figure 3 shows 
the same quantities as in Fig. 2 for m = 93 sec -l and ~2 = 0.22, 0.16, 0.125, and 0.045 (curves 
I-IV). 

The experimental data were used to evaluate the constants in Eqs. (13) and (14)o It 
was assumed that the v i profile at the wall is determined mainly by the constants A and B. 
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TABLE 1 

No. ~o, see  -~ ~,N~hi s e e /  -~'o, W ~ooo,,, ~ . ~ o o %  ~, E--~lt~ooo; 
NO 

30 
40 
64 
93 

l i5  
i45 
i59 

0,25 
0,45 
0,94 
t,27 
1,76 
2,45 
3,53 

6 
t5 
58 

t37 
265 
544 , 
909 

32,8 
33,0 
33,4 
33,6 
33,6 
33,7 
33,5 

0,8 
0,7 
0,6 
0,6 
0,7 
0,7 
0,7 

66,4 
66,3 
66,0 
65,8 
65,7 
65,6 
65,8 

TABLE 2 

~o.i00~ E~ No. ~2 m,Nm.Sec / N~ W E_, .iooo~ ~ 1 7 6  , E . ~o .too% 

0,045 
0,062 
0,087 
0,t25 
0,16 
0,22 

4,25 
4,t1 
3,87 
3,71 
3,63 
3,42 

280 
280 
274 
272 
269 
253 

48,6 
47,8 
45,8 
42,4 
39,t 
33,4 

0,3 
0,5 
1,1 
1,9 
i ,8 
0,3 

5t ,1 
5i ,7 
53,i 
55,7 
59,1 
66,3 

The dependence of these constants on ~ was assumed to be linear, and their dependence on ~2 
was assumed to be quadratic. Then the function ~(r) = ~rr(v I - Ar - Br -I) was plotted and 
exhibited abrupt variations at the grid. These results were used to find the constants C I 
and C2, and it was assumed that they depend linearly on ~. The values of the constants 
kl + k2 and k3 were fixed for each ratio RI/R2 in the calculations. The tests with m = 40, 
115 sec -I were used to determine the indicated constants in Fig. 2, and the tests with a2 = 
0.045, 0.22 were used for Fig. 3. For the evaluation of the constant Ca we assumed that the 
velocities vl and v2 are equal at the wall (see Fig. 3) or at the minimum point (see Fig. 

2). 

The nature of the flow of the carrier phase is adequately described by the sum of the 
three functions indicated above. The calculated values of vl are finite at the grid. With 
an increase in m (~2 = const; see Fig. 2) the values of v I increase, but the nature of the 
v I profile is preserved. For each value of w the velocity vl is a maximum at the grid, and 
then the vl profile acquires a pronounced minimum, after which v I varies only slightly. 

With,an increase in the granule content (m = const; see Fig. 3) a significant deforma- 
tion of the vz profile is observed. For ~2 ~ 0.045 the granule content has scarcely any in- 
fluence on v I. With an increase in a2 an ever-increasing retardation of the carrier phase 
is observed at the grid. 

Table 1 gives the values of ~!, No, El/N0, E2/N0, and El2/N0 for various values of 
(i • 1 mm grid mesh, RI = 0.06 m, ~ = 0.125). With an increase in the rpm of the mixer the 
values of Dl increase. A decrease in the radial dimensions of the channel causes ~i to in- 
crease (e.g., in the case RI = 0.089 m we have ~i = 30 N'sec/m 2 at ~ = 25 sec -I and ~i = 175 
N.sec/m 2 at w = 145 sec-l). All of this is consistent with the known estimate for the turbu- 

lent viscosity [5]. 

The main power consumption (see Table i) is spent in the fraction E12. The least energy 
dissipation is in the disperse phase. With a decrease in the radial dimension of the channel, 
the power consumption increases and is redistributed, viz., the energy dissipation increases 
in the carrier and disperse phases, and the fraction EIz decreases. This is evidently related 
to enhancement of the influence of turbulent fluctuations, which results in an increase of 
w2, and, as a consequence, smoothing of the v I profile. 

Table 2 shows the same quantities as in Table 1 for various values of ~2 (i • 1 mm grid 
mesh, R l = 0.075 m, ~ = 93 sec-1). The decrease in the power consumption with increasing 
~2 is associated with the decrease in the fraction E I and the increase in the fraction El2. 
The first is caused by a decrease in the turbulence scale owing to a reduction in the mean 
free path of the granules, and also by the suppression of small-scale fluctuations as the 
granule concentration is increased. The increase in Ei2 is associated with the increase in ~2. 
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We now consider the distribution of the disperse phase in the channel. The solution 
of Eqs. (23) and (24) for various values of <a2> shows that ~2 remains practically constant 
at distances from the grid greater than two or three granule diameters. At smal]er distances 
from the grid for a channel of sufficient radius [(R 2 - R~)/2a > 6] the solution predicts 
a decrease in a2. However, the investigated model does not allow for processes near the grid, 
viz., the variation of the fluctuation velocities, inflow, and repulsion of the granules, 
etc. Consequently, the problem of the behavior of the granules near the grid requires addi- 
tional investigation. 
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FORMATION OF FLOW IN A GASDYNAMIC MOLECULAR SOURCE 

AT LOW REYNOLDS NUMBERS 

V. N. Gusev and A. I. ~melik UDC 533.6.0].1.532.522.2 

i. The usual means of creating a molecular beam in a gasdynamic source [i] is shown in 
Fig. I. From the forechamber 1 the gas, with a pressure P0 and a temperature To, expands 
through the nozzle 2 to a certain supersonic Mach number in the preskimmer chamber 3 (0 & x 
Xs). In the process, a considerable part of the chaotic thermal motion of the molecules is 
converted into ordered mass motion. In the high-vacu~ chamber 4 (x > Xs) a small part of ~ 
this stream is subsequently formed into a molecular beam with the help of a conical intake - 
the skimmer 5; 6 is the boundary of the undisturbed region of the jet, 7 is a suspended shock, 
and 8 is the boundary of the jet. 

For a Maxwell velocity distribution of the molecules with a superposed mass velocity Vm 
the intensity of such a source at the detection point xd is [2] 

I (x~) = ~ (xd) v~x~ = i (x~). 1 - cos  ~ ,r - ' ~ m  ~ ~ l '  

11 (x) = -~-e -~ + (t + erf x),: 

where p is the density; S = (~-~)M = Vm(2RT) -I/2 is the velocity ratio; < is the ratio of 
specific heats; ~ = @ + 7. For small angles ~, as is usually the case in such installations, 
the latter expression is simplified, 
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